Water Rocket Construction Menu:
- Parachute
A strong and reliable parachute design is very important to anyone wishing to develop a water rocket with a recovery system. Any system from a simple Air Flap mechanism to the sophisticated ServoChron™ electronic deploy system relies on a well made parachute. This tutorial will reveal the secrets to easily making a parachute that will safely recover your water rockets.
- Bottle Coupler
This tutorial will show a method for creating inter-bottle connectors which can be used to join together multiple bottles by the threaded necks. These bottle connectors are useful for Water Rockets because they allow for a modular approach to be applied to your rocket design, which simplifies construction and repair of a damaged rocket.
- Bottle Cutting
Nearly every water rocket design that you can construct will involve some sort of bottle cutting. This tutorial will show you an easy method for getting perfect cuts every time.
- Constructing Removable Box Fins
One set of Water Rocket components which are critical to a successful and stable flight are the fins. U.S. Water Rockets designed and tested a new idea for creating water rocket fins which is called the "Box Fin" design, to create a quick and easy method for adding fins to Water Rockets which were much more rugged than typical fins, yet easier to fabricate with a higher degree of accuracy. This tutorial will explain how to create a triple box fin for a water rocket.
- Enhancing Removable Box Fins
The first improvement we will make is to modify the fin design so that it is adjustable to fit multiple bottle diameters. The next improvement we will make is to alter the attachment method for the fins. If you fly in an area prone to landing in trees, you can modify the design so that it will break away from the rocket with less force.
- Nosecone
One of the most important components you will build for your water rocket is the nosecone. This tutorial will explain how to build a good looking nosecone that performs great too.
- Corriflute Recycling
A relatively new building material used in the construction of water rockets is a corrugated plastic sheet or corriboard. It is also known under the tradenames of Corriflute, Coroplast, IntePro, Correx, Twinplast, or Corflute. This tutorial explains how to repurpose used corriflute for your water rockets.
- Bottle Label Removal
This tutorial will show you how to prepare your bottles for Water Rocket Construction. To prepare your bottles, the labels and glue must be removed, and the bottles must be cleaned of all contamination from their contents and oils left from manufacturing or handling.
- Bottle Label Removal V2
This tutorial will show you another method how to prepare your bottles for Water Rocket Constrction. This involves removing the labels and adhesive from the bottles and making sure there are no oils on the bottle. Failing to do so can result in the rocket leaking or exploding under pressure, due to contaminated splices.
The complete index on how to build a water rockets, launchers and parachute deployment systems.
All materials and construction methods described here are class legal to use in all WRA2 water rocket competitions.
- Cable Tie Launcher
What good is building a water rocket if you have no way to launch it? The launcher we will be constructing is a variation of the Clark Cable Tie launcher, as this is the most reliable launcher that is easy to make.
- Launch Tube o-ring
Revised instructions for adding the o-ring to the Clark Cable Tie Launcher launch tube which simplify the build and improve the design. We have put a lot of effort into simplifying the design to remove steps which involve precise measurements and part placement, to maximize the ease of construction.
- Cable Tie Release Mechanism
This tutorial shows how to add a Clark Cable Tie Release Mechanism to the 22mm Launch Tube fabricated in the previous tutorial. This tutorial shows the newly revised and simplified instructions for making the release.
- Split Collar Launcher
This tutorial shows how to create the latest type of water rocket launcher which uses the newest improvements.
- Gardena Launcher
This quick tutorial showing how to make a compatible water rocket launcher that uses a gardena hose quick release connector for the release mechanism. This type of launcher also works with any standard gardena nozzle in addition to our 3D printed nozzle design. If you have all the materials on hand you should be able to build this launcher in an hour or less and be out launching water rockets in no time!
- ServoChron™ Quick Start Guide
The ServoChron™ is a low cost time delayed dual servo controller designed for use as a parachute deployment or staging mechanism for Water Rockets. There are other potential applications for the ServoChron™ as well. The core of the ServoChron™ is the Texas Instruments MSP430 LaunchPad. This $4.30US board is an inexpensive microcontroller hobbyist experimenting platform that you load our FREE application firmware into with a USB cable. The FREE ServoChron™ application firmware file created by U.S. Water Rockets turns the MSP430 LaunchPad into a user programmable dual servo deployment system timer/controller.
- Launch Detect Switch
This tutorial will show you have to construct a very reliable and lightweight acceleration switch which you can use to activate electronic systems on your rocket such as a ServoChron™ 2 Dual Servo Actuated Parachute Recovery System.
- Parachute
A strong and reliable parachute design is very important to anyone wishing to develop a water rocket with a recovery system. Any system from a simple Air Flap mechanism to the sophisticated ServoChron™ electronic deploy system relies on a well made parachute. This tutorial will reveal the secrets to easily making a parachute that will safely recover your water rockets.
- Radial Deploy System
Since it is the key to safely recovering a rocket and payload and all the time, materials, and labor that went into building them To insure the safe recovery of our fragile and expensive experiments and payloads, we decided that we needed to invent a parachute system that was more reliable than anything ever flown before. We dubbed this new design the "USWR Radial Parachute Deployment System", and it is a radical departure from traditional systems, because it relies on only one moving part. The system we designed met that goal and also has a number of other advantages over previous systems.This system is less expensive and time conuming to build, has less moving parts, and can be located more places on your rocket.
- Axial Deploy
The objective of this tutorial is to demonstrate how to build a completely new type of parachute recovery system for water rockets. This system was developed to fill the need for a reliable parachute recovery system that could be made from common materials which was very easy and fast to make. Historically, ease of assembly and reliability have been mutually exclusive goals. This prompted U.S. Water Rockets to take a "clean slate" approach to the problem. This tutorial will explain how to construct the latest version of the U.S. Water Rockets Axial Parachute Recovery System.
- Hybrid Deploy
The Hybrid Deploy System is our latest idea for improving water rocket systems to make them more reliable and easier to build. This system improves upon our previously published designs known as the Axial Deploy System, and Radial Deploy System. By combining the ease of construction of the Radial Deploy System, with the heavy duty capacity of the Axial Deploy System.
- Launch Detect Switch
This tutorial will show you have to construct a very reliable and lightweight acceleration switch which you can use to activate electronic systems on your rocket such as a ServoChron™ Single/Dual Servo Actuated Parachute Recovery System.
- Bottle Splicing
In order to create larger Water Rockets with bigger pressure chambers than afforded by typical soft drink bottles, many enthusiasts have resorted to joining multiple bottles together using various methods which all are commonly referred to as "splicing". This tutorial will show you how to use this new method to create perfect splices that are easier to create and outperform traditional splices in both strength and appearance.
- Bottle Label Removal
This tutorial will show you how to prepare your bottles for Water Rocket Construction. To prepare your bottles, the labels and glue must be removed, and the bottles must be cleaned of all contamination from their contents and oils left from manufacturing or handling.
- Bottle Cutting
Nearly every water rocket design that you can construct will involve some sort of bottle cutting. This tutorial will show you an easy method for getting perfect cuts every time.
- Tornado Tube Coupler
Many teams build their rockets in this manner using a pre-manufactured commercial product used in school science experiments commonly called a "Tornado Tube" or a "Vortex Bottle Connector". The commercial versions typically cost $1.00US to $2.00US each. This tutorial will show how to make them for pennies each and without the expense and time consuming process of turning them on a lathe. This method could also be applied to other size bottles such as the wide mouth bottles that sports drinks often are supplied in. These bottle connectors are useful for Water Rockets because they allow for a modular approach to be applied to your rocket design.
This tutorial explains how to create a panoramic view using some free image stitching software which you may already have on your computer and were not even aware of!
If you have hobbies which involve things that fly such as RC Planes, Drones or Model Rockets, then chances are that you've had one which you were flying end up stuck in a tree. We've had this experience a number of times in the past, and we wanted to share our Tree Recovery System with you so that you may benefit from our design. In this Tutorial we will show you how to build and how to use our design, which is easy and inexpensive to make and works amazingly well.